We can design "Zero Energy Homes" but when these are tested after occupancy sometimes the energy use is not what was expected. More houses can be Net-Zero Capable, but they need the occupant to make them so. We will look at how to compare house designs when the occupant in near-zero energy homes matters so much

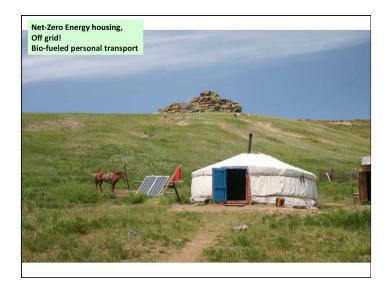
NESEA 2011

•Efficiency Vermont is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

- At the end of this program, participants will be able to:
 - Understand different components of housing energy use
 - -The relative impact of heating
 - -The importance of occupant behavior
 - -The role of misc electrical loads



Net Zero Occupants

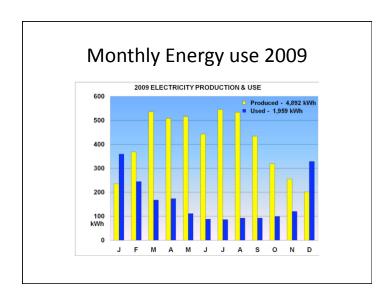
Dr John Straube P.Eng Building Science Corporation University of Waterloo

www.BuildingScience.com

Presentation Outline

 What is the influence of occupant behavior / needs and "other" energy consumers

Zero Energy Powerhouse Montague



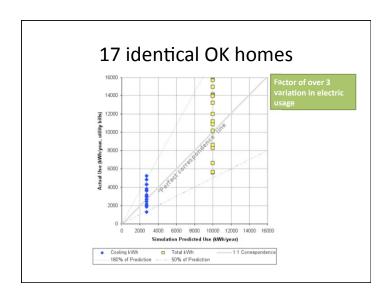
Attractive, small, sensible, **astounding** performance 1152 Square feet R40 walls, R100 roof, triple glazing, R30 slab (no basement!)

- Sundanzer 8-cubic foot chest refrigerator has an estimated use of only 33 kWh per year
- Energy Star laptop computers, clothes washer, back-up heating/cooling Fujitsu heat pump, lights, fridge and TV. No clothes dryer or dish washer.
- Solar DHW reduces this component to near zero

Boston Herald March 9, 2010

- "The 1,152-square-foot, cedar-shingled house has a metal roof covered with photovoltaic solar panels that last year generated 4,892 kilowatt hours of electricity. The house itself only used 1,959 kilowatts for the entire year – making its annual energy bill for heating, cooling, hot water, cooking, appliances and lighting an astoundingly low \$392."
- This is not due to technology: most is the people!

Energy and Buildings, 1 (1977/78) 313 - 324 © Elsevier Sequoia S.A., Lausanne — Printed in the Netherlands


Movers and Stayers: The Resident's Contribution to Variation across Houses in Energy Consumption for Space Heating*

ROBERT C. SONDEREGGER

We have proved experimentally that (so far) unpredictable behavior patterns of the occupants introduce a large source of uncertainty in the computation of residential space heating energy requirements. The lesson to be learned is two-fold: (i) there is little practical usefulness in pushing too far the detail of any deterministic model for the prediction of heating load requirements; (ii) the effect of retrofits, weather or other factors physically influencing the heat load of a house should be tested on many houses occupied by real people. These conclusions may be the strongest a posteriori justification

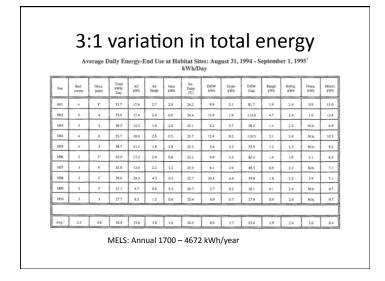
1977 townhomes

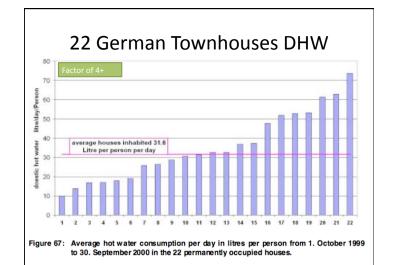
 Variation between lowest 10% and highest 10% energy users (eg 80% of population) was about two times

Parker 1996 Ten homes

MONITORED ENERGY USE PATTERNS IN LOW-INCOME HOUSING IN A HOT AND HUMID CLIMATE

Danny S. Parker, Maria D. Mazzara and John R. Sherwin

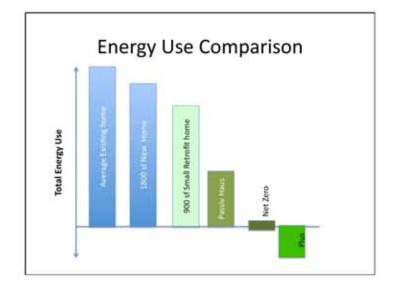

> Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 32922

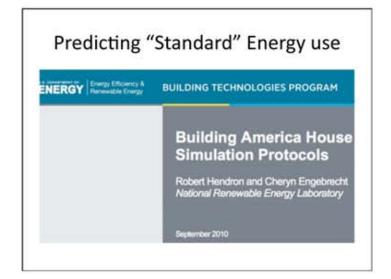

ABSTRACT

The Florida Solar Energy Center (FSEC) is metering energy use in two Habitat for Humanity developments. The objective is to understand how energy is used in low income housing and how it can be effectively reduced.

The ten "control homes" come from a conventional housing project built by in 1993 Habitat for Humanity in Homestead, Florida. Another ten "experimental homes" have been recruited from the 190 home Jordan Commons development in the same vicinity. These houses, which are soon to be metered,

feet); the four bedroom models total 111 m² (1190 n²). The construction is conventional for South Florida: concrete block on an uninsulated monolithic slab with an exterior light colored stucco finish. The homes generally face north or south with a small porch over the entrance. The roofs are of standard A-frame construction with plywood decking covered by asphalt shingles. The concrete block walls are insulated with RSI-0.5 m²-K/W (Rs. 3 n²-h²-F/Bru) insulation on the interior; the attic has RSI-3.3 (R-19) fiberglass batts over the sheetrock ceiling. The windows are single Jeazed units with aluminum frames and are single-hung so that about 30% of their gross are can be opened for

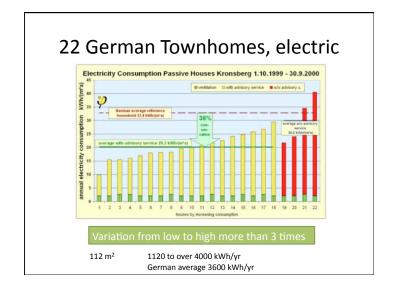



Why do we care

- · If we want
- 1. to reduce society's consumption, we need to know what work
- 2. to promise delivery of a building of a certain performance
- 3. to compare building techniques/ technologies

Net Zero Energy

- Generate as much energy in a year as you consume
 - -Generation: on site, usually solar, sometime wind
 - 1.0 kWh = 3.6 MegaJoule = 3412 BTU =0.12 m³ NG
 - -Energy can be electricity, natural gas, oil, LPG
 - -Annual: Make up for low winter solar gain
 - · Wind can be more in winter than summer
 - · Uses the grid as a big 100% efficient battery
- PlusHouses produce more than they consume


Appliance	Electricity (kWh/yr)		
Refrigerator	434		
Clothes washer (3.2 ft ³ drum)	38.8 + 12.9 × N _{br}		
Clothes dryer (electric)	538.2 + 179.4 × N _b		
Clothes dryer (gas)	43 + 14.3 × N _{br}		
Dishwasher (8 place settings)	87.6 + 29.2 × N _{br}		
Range (electric)***	250 + 83 × N _{br}		
Range (gas)****	40 + 13.3 × N _{br}		
Miscellaneous loads	1595 + 248 × N _{br} +		
(gas/electric house)	0.426 × FFA		
Miscellaneous loads (all-	1703 + 266 × N _{br} +		
electric house)	0.454 × FFA		

MEL	Average Units/ Household	Energy/Unit (kWh/yr)	Energy/Household (kWh/yr)
Bottled water	0.010	300.0	3.0
Trash compactor	0.010	50.0	0.5
Slow cooker/crock pot	0.581	16.0	9.3
Home Office			
Laptop PC (Plugged In)	0.287	72.1	20.7
Desktop PC w/Speakers	0.906	234.0	212.1
PC monitor	0.906	85.1	77.1
Printer (laser)	0.049	92.5	4.5
Printer (inkjet)	0.660	15.5	10.2
Dot matrix printer	0.030	115.0	3.5
DSL/cable modem	0.359	52.6	18.9
Scanner	0.050	49.0	2.4
Copy machine	0.086	25.0	2.1
Fax machine	0.115	326.3	37.6
Multifunction device	0.217	58.8	
Bathroom			
Hair dryer	0.861	41.1	35.4
Curling iron	0.532	1.0	0.5
Electric shaver	0.243	1.0	0.2
Electric toothbrush charger	0.078	11.5	0.9
Beard trimmer	0.067	1.0	0.1
Garage and Workshop			
Auto block heater	0.007	250.0	1.8
Lawn mower (electric)	0.059	42.9	2.5
Heat tape	0.030	100.0	3.0
Kiln	0.020	50.0	1.0
Pipe and gutter heaters	0.010	53.0	0.5
Shop tools	0.130	26.4	3.4
Cordless power tool chargers	0.443	16.0	7.1

National Average is

MEL	Household	(kWh/yr)	(kWh/yr)
Air cleaner	0.217	65.7	14.2
Vacuum cleaner (cordless)	0.183	41.0	7.5
Heating pads	0.670	3.0	2.0
Surge protector/power strip	0.360	3.9	1.4
Timer (lighting)	0.280	20.1	5.6
Timer (irrigation)	0.050	45.2	2.3
Iron	0.922	52.7	48.6
Baby monitor	0.100	22.8	2.3
Large Uncommon MELs and MGLs			
Pool heater (electric)	0.004	2300.0	8.3
Pool pump (electric)	0.075	1102.0	82.3
Hot tub/spa (electric heating and pump)	0.048	2040.7	97.4
Hot tub/spa pump (electric for gas spa)	0.038	460.0	17.5
Well pump (electric)	0.127	400.0	50.8
Gas fireplace	0.032	1760.0	57.0
Gas grill	0.029	879.0	25.5
Gas lighting	0.012	1671.0	19.6
Pool heater (gas)	0.014	6506.0	87.8
Hot tub/spa heater (gas)	0.011	2374.0	25.6
Other	1.000	9.4	9.4
Total MEL Load			3373

That is about 2.5 kW of PV to run the MEL's of a normal house!

Occupant Factors

- Indoor temperature
- Number and age of occupants
- Appliance use
 - -Showers
- Technology intensity
 - -Game consoles, computers, PVR
- Open windows/doors

What uses energy in normal houses?

- Space heating: Big deal in cold climates! (50-65%)
 - 10 000 to 30 000 kWh and up for newish house
- Domestic hotwater DHW
 - Assuming system efficiency is 100% 2000 4000
- Other (in kWh)
 - Refrigeration (500 kWh)+ Range (500 kWh) = 1000
 - Washer (75 kWh), Dryer (925 kWh) =
- 1000

Lighting

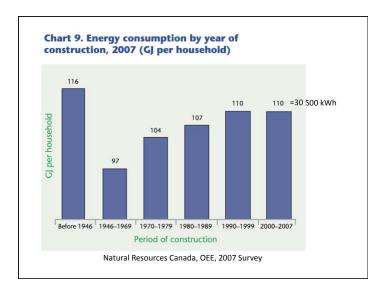
500- 3000

Plug and misc

1000-4000

Typical Household:Heating 10 000- 30 000 kWh

DHW 2 000- 4 000 kWh Electric 3 500- 9 000 kWh 16 – 43 000 kWh

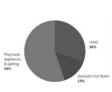

Summary of uses

	Site	Source
End use	(kWh)	(MBtu/yr)
Space heating	11,225	115
Space cooling	2,732	28
DHW	4,837	50
Lighting	3,110	32
Appliances and MELs	7,646	78
OA ventilation	400	4
Total usage	29,950	307

NREL Typical 2250 Sq ft 3 BDR new home

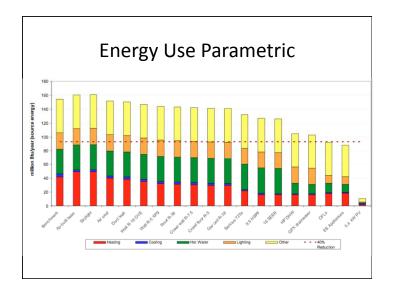
"Typical" Electrical use

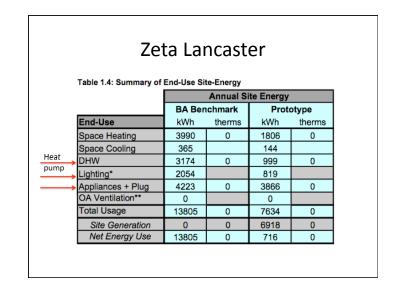
Size of House	2250	sf		
No of Bedrooms	1	2	3	4
Refrigerator	434	434	434	434
Clothes washer	52	65	78	90
Clothes Dryer (elec)	717	896	1075	1254
Range elec	333	416	499	582
Dishwasher	117	146	175	204
MEL elec	2991	3257	3523	3789
Total (all elec)	4643	5213	5783	6354
Lighting (inside)	1554	1554	1554	1554
Exterior lighting	326	326	326	326
Total	6523	7093	7663	8233

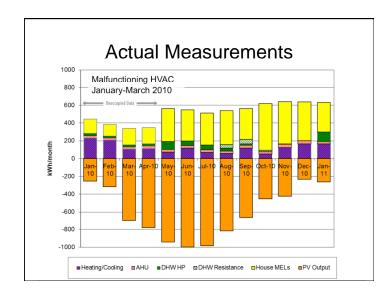


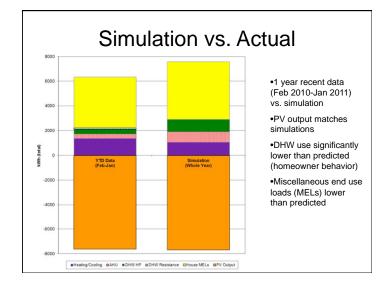
Heating Load Reduction

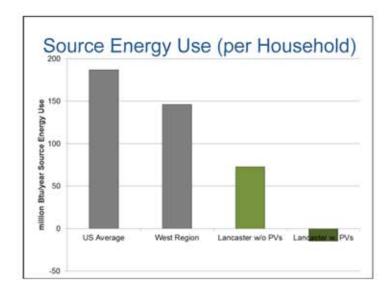
- Easy to cut heating/cooling in half
- DHW can be reduced
- Lights

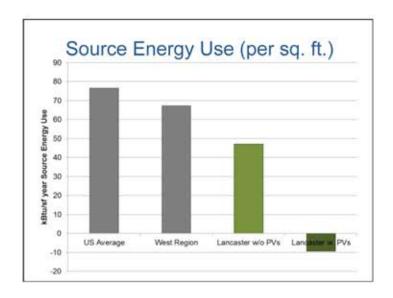

Pill House, Vermont, 2800 ft²

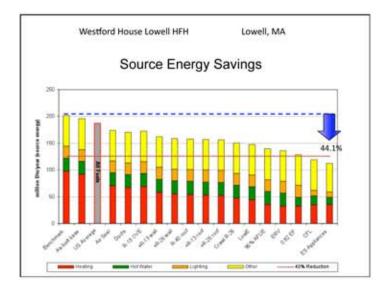

- 10 kW wind turbine on 120 ft tower=6500 kWh
- R56 ceiling, R40 walls, R5+ triple-glazed window
- R20 basement, 2 ACH50, 8500 kWh/yr heating load
- About 3500 kWh/vr for all other loads
- GSHP COP=2.5

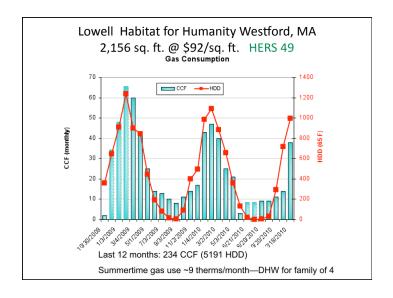


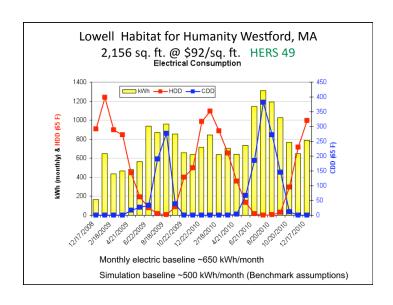


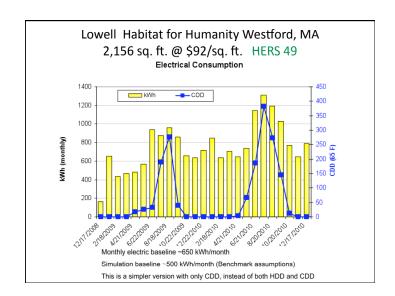


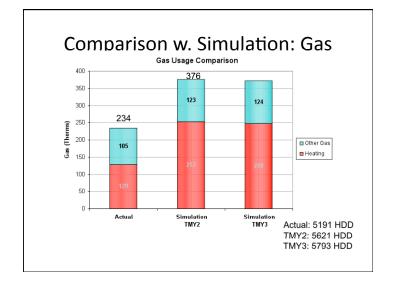


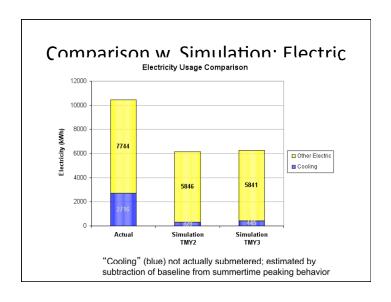


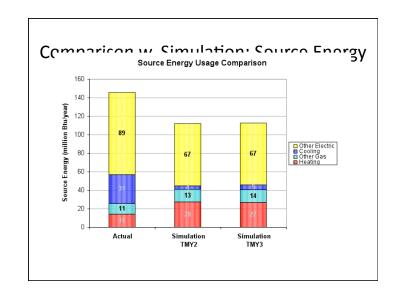

NESEA Building Energy11




March 8-10, 2011







Foulds	. Ц	1100	200	\cap cf	:	
roulus	пυ	use	200	JU 31		
		Annual S	ite Enerav	,	1	
	BA Ber	nchmark		otype	1	
End-Use	kWh	therms	kWh	therms		
Space Heating	1003	1290	475	380	11 61	
Space Cooling	2814		975			
DHW	0	275	0	106	3 10	
Lighting*	4281		1376			
Appliances + Plug	5853	116	5207	80	7 55	
OA Ventilation**	0		0		1	
Total Usage	13951	1681	8033	566	24 62	
		ted Annu			l	
	BA Ber	nchmark	Prot	otype	I	
End-Use	10^6	BTU/yr	10^6	BTU/yr	I	
Space Heating	1	52	4	17	I	
Space Cooling	3	32		11	Ī	
DHW	3	30	12		1	
Lighting*	4	19		16	1	
Appliances + Plug	8	80		80 69		1
OA Ventilation**		0		0		
Total Usage	3	344		153		

How to deal with this?

- Do our best with what we control
 - -Improve skin, mechanical efficiencies
- Make it easy for occupants to save energy
 - -Energy monitoring and display
 - -Local heat sources in bathrooms
- Beware Nintendo engineering
 - -The model is not reality

Summary

- Comparing houses without "standard" occupants and appliance usage is apples to oranges
- Major savings possible by modifying usage patterns
 - But we cant force people and we cant build national policy on the assumption

Summary

- We know how to get heating/cooling loads down
- Lighting can be significantly reduced
 - -Daylighting? Or occ sensors
- How do we manage DHW
 - -Better appliances, more efficient appliances
- How do we manage MEL?
 - -Better appliances

Comparison of CMHC Equilibrium

 NZE Possible: Super-insulated, Super-tight, large PV arrays, large SHW systems

Location	Now Toronto	Avalon Red Deer AB	Riverdale Edmonton	ecohome Ottawa
HDD (18C)	4000	5500	5600	4600
Floor Area (heated m2)	139	240	234	310
Total Site Energy (ekWh)	13475	13094	14391	20646
Heat Energy (kWh/m2)	23.1	23.9	33.7	40.2
Roof (R)	36	87	100	60
Wall	40	70	56	44
Window	5.7	' 5	7.3/10	5.7
Basement walls	25	none	54	40
Slab	25	60) 24	15
ACH@50	2.6	0.5	0.5	0.65
PV Installed (kWp)	2.7	8.6	5.6	6.2
SHW produced (kWh)	1824	3886	1907	6665
PV produced (kWh/yr)	2800	9569	6224	8184
Notes	Not NZE		Duplex	

Strategy

- Should we build NetZero Houses?
 - On site renewables are not very cost or resource effective
 - –Who will pay for the grid when we get a lot of NZE?
- But, Fun to try!
- Reduce heating loads *first and foremost*
- Reduce DHW, appliance, lighting loads