

- in how much they can over-cool
 More energy efficient homes have less sensible heat gain to drive thermostat demand but latent gain remains mostly the
 - Low heat gain windows

same

- Ducts in conditioned space
- More, and better-installed, insulation
- · Less heat gain from appliances and lighting

Conventional Cooling System Dehumidification
Enhancements

AHU Dehumidification Enhancement Features	Carrier ¹	Lennox	Goodman ²	ICP ³	Nordyne ⁴
Verifiele en est station	5.4	CDV00M4/	N/DTO	E1.04	50.04
Variable speed almow	PV4	CBA32MV	AVPIC	P VIVI	D4VM
Selectable cooling/neat pump/neating ran speed/almow	V,	V	V	,	V
Selectable almow Adjustment (+/- %)	V	~	V	,	1
Selectable constant fan speed/arritow	V	1	w/communicating tstat	- V	V
Debute for profile with lower pirflow for a time	V	029/ for first 7.5 min	908/ for first 7 5 min	V	V 75% for first 10 mir
Denum fan prolie with lower almow for a time	,	82% für first 7.5 min	82% TUT TITSL 7.5 MIN	,	75% for first to min
Receives Denum signal from tstat or denumidistat	V	V	V	V	V
Denum logic is u vac on numicity rise	V	~	V	,	V
Denum logic is 24 vac on humidity rise	000/	000/ 1- 700/		V	1
Lower cooling arriow if RH is above RH setpoint	80%	00% t0 / 0%		80%	V
Extended cooling after thermostat setpoint reached	V 50% 40 min an laff	~			
Intermittent super-low cirrition during extended cooling	50%, 10 min on/oir				
¹ Carrier includes Bryant					
² Goodman includes Amana					
³ ICP includes Comfortmaker, Tempstar, Heil, Arcocaire	Dav&Night Keep Rit	e			
⁴ Nordyna includes Erigidaire, Gibson, Wastinghouse, Ta	nnan Kelvinator Phil	co. Nutone			
Nordyne includes Prigidaire, Oldson, Westinghouse, Ta	ppan, reivinator, e ni	co, natorie			
Affordable Comfort Conference					
3/28/2012 Baltimore			Energy Efficiency A	TallNes XXX	DSC

No	System Description	Level of Improved Dehumidification	Exhaust Only	Supply – Central Fan	Balanced ERV/HRV
1	Conventional DX System	None	x	x	x
2	Conventional DX System with Lower Air Flow and Thermostat Overcooling	Enhanced	x	х	x
3	Two-Speed Conventional DX System	Enhanced	x	х	х
4	Variable Speed Mini-Split DX System	Enhanced	x	-	х
5	Stand-Alone Dehumidifier with Conventional System Mixing	Explicit	x	х	
6	Ducted Dehumidifier with Conventional System Mixing	Explicit	x	x	
7	Ducted Dehumidifier with Outdoor Air Preconditioning	Explicit	-	-	
8	Enhanced Cooling with Partial-Condensing/Subcooling Reheat (2-speed compressor)	Enhanced	x	х	x
9	Enhanced Cooling with Full Condensing/Subcooling Reheat (2-speed compressor)	Explicit	x	x	-
10	Conventional DX System with Lower Air Flow	Enhanced	x	x	х
11	Conventional DX System with Thermostat Overcooling	Enhanced	x	х	х
12	Conventional DX System with Sensible-Only AAHX	Enhanced (w/o control)	x	x	x
13	Gas-Regenerated Desiccant Dehumidifier	Explicit	x	x	-
14	DX Condenser-Regenerated Desiccant Dehumidifier	Explicit	x	x	
dable /2012	Comfort Conference Baltimore	Ba pressent or	Errorry Ellistan	a le Ballin T	-

© buildingscience.com

Internal He	eat and Moisture Generati	on		
The magnitu America Ber amount is a houses, the lighting and lower.	ide and scheduling of interna nchmark Definition (Hendron pplied unadjusted for the HE internal heat gain amount w appliances as follows: HERS	I heat generat 2008). The Bi RS 130, 100 ho ill be lower to 85 is 10% lowe	ion will be taken from th enchmark internal heat g buses. For the HERS 85, 7 reflect installation of mo rr; HERS 75 is 20% lower;	e Building ain total '5 and 50 re efficient HERS 50 is 30%
Internal moi of ASHRAE S ASHRAE Sta Conventiona Mixing (Syst to the Buildi	isture generation will models itandard 160). A sensitivity s ndard 160) for zones 2A and al DX System (System 1) and em 6). The internal moisture ing America Benchmark Defin	ed as 12 lb/day study will be co 4A, for the HE the Ducted De gain will be so nition.	for the medium size hou onducted for 24 lb/day (a RS 100 and 70 houses, ar humidifier with Conventi cheduled throughout the	use (about 50% bout 100% of d for the onal System day according
Reductions for a 3 bedro been shown conditions.	below the ASHRAE Standard som house can account for l to be realistic based on BSC	160 moisture ; ower than full- comparison to	generation rate of 31.2 lb time occupancy. These r o monitored indoor envir	o/day (1.3 lb/h) eductions have pormental
Affordable Comf 3/28/2012 Baltir	ort Conference more	25	Energy Efficience ENERGY Forewable Erec	intraces bsc

Parameter	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
Wall insulation R-value (nominal)	13	13	13	13	19
cavity	13	13	13	13	19
sheathing	0	0	0	0	0
framing factor	0.23	0.23	0.23	0.23	0.23
Ceiling insulation R-value	30	30	30	38	38
Slab insulation R-value (2' down)	0	0	0	10	10
Window U-value	1.20	0.75	0.65	0.40	0.35
Window SHGC	0.40	0.40	0.40	0.40	0.40
Building enclosure air leakage (ach50)	7	7	7	7	7
Duct air leakage to outside (%)	10	10	10	10	10
AHU location	attic	attic	attic	attic	attic
Supply duct area in attic (ft ²)	544	544	544	250	100
Return duct area in attic (ft ²)	100	100	100	100	100
Duct R-value	6	6	6	6	6
SEER, EER	13, 10	13, 10	13, 10	13, 10	13, 10
HSPF, COP	7.7, 2.3	7.7, 2.3	7.7, 2.3	7.7, 2.3	7.7, 2.3
AFUE	85	85	85	85	85
Internal heat gain (lumped)	BA Benchmark	BA Benchmark	BA Be nchmark	BA Benchmark	BA Benchmark
(people+lighting+appliances/equip)	(72.7 kBtu/day)	(72.7 kBtu/day)	(72.7 kBtu/day)	(72.7 kBtu/day)	(72.7 kBtu/day)
	BA Benchmark	BA Benchmark	BA Be nchmark	BA Benchmark	BA Benchmark
Internal moisture generation	(16.9 lb/day)	(16.9 lb/day)	(16.9 lb/day)	(16.9 lb/day)	(16.9 lb/day)
DHW (EF)	0.56	0.56	0.56	0.56	0.56
HERS	102	106	108	108	107
fordable Comfort Conferen 28/2012 Baltimore	се			nu Efficience a State	bs

	1000	2.5.5			
Parameter	Climate Zone 1	Climate Zone 2	Climate Zone 3	Climate Zone 4	Climate Zone 5
Wall insulation R-value (nominal)	23	23	23	30	30
cavity	19	19	19	19	19
sheathing	4	4	4	11	11
framing factor	0.17	0.17	0.17	0.17	0.17
Ceiling insulation R-value	48	48	48	54	60
Slab insulation R-value (2' down)	0	5	5	10	10
Window U-value	0.35	0.35	0.30	0.30	0.30
Window SHGC	0.30	0.30	0.30	0.35	0.35
Building enclosure air leakage (ach50)	3	3	3	3	3
Duct air leakage to outside (%)	none	none	none	none	none
Air distribution system location	interior	interior	interior	interior	interior
SEER, EER	17, 14	17, 14	17, 14	17, 14	17, 14
HSPF, COP	8.8, 2.6	8.8, 2.6	8.8, 2.6	8.8, 2.6	8.8, 2.6
AFUE	93	.93	93	93	93
Internal heat gain (lumped)	BA Bnchmrk*0.7	BA Bnchmrk*0.7	BA Bnchmrk*0.7	BA Bnchmrk*0.7	BA Bnchmrk*0.7
(people+lighting+appliances/equip)	(50.9 kBtu/day)	(50.9 kBtu/day)	(50.9kBtu/day)	(50.9 kBtu/day)	(50.9 kBtu/day)
	BA Benchmark	BA Benchmark	BA Be nchmark	BA Benchmark	BA Benchmark
Internal moisture generation	(16.91b/day)	(16.9 lb/day)	(16.9 lb/day)	(16.9 lb/day)	(16.9 lb/day)
DHW (EF)	0.93	0.93	0.93	0.93	0.93
HERS	53	53	51	53	56

© buildingscience.com

	and the second	Number of
		simulation cases
	Typical Existing house (HERS Index 130)	70
1	HERS Reference House (HERS Index 100; 2006 IECC Code)	150
1	Energy Star house (HERS Index 85)	150
1	Builders Challenge house (HERS Index 70)	210
	Building America house (HERS Index 50)	210
ł	subtotal	790
1	Sensitivity 1 (lower cfm/ton and overcooling)	48
	Sensitivity 2 (heat pipe and desiccant)	28
	Sensitivity 3 (house size)	80
	Sensitivity 4 (duct leakage)	60
	Sensitivity 5 (ventilation rate)	80
	Sensitivity 6 (moisture generation)	40
- [Sensitivity 7 (duct insulation)	60
F	subtotal	396
ł	total	1186

Recommendations Going Forward

- > Use 12 lb/day as default (24 lb/day for sensitivity)
- > Use moisture capacitance of 30x
- > Change Set points to be 72F / 78F for humid climates (two zones: Miami, Houston)

	50% PH	Above	Above 60% PH	Hours Above		A+ hre	8+ hre	4 + bre	84 hre	4 + hre	8+ hre	4 a bre	8+ h
20h50s1rh50v0	3.340	2 412	1.565	992	z0h50s1rh50v0	26	12	34	26	38	31	21	1
0h50s1rh50v1	7.379	3.037	975	215	z0h50s1rh50v1	63	54	103	79	51	35	17	-
0h50s1rh50v2	7.268	2.803	1.079	238	z0h50s1rh50v2	87	79	78	62	51	34	19	
0h50s1rh50v4	7,450	3,427	1,402	359	z0h50s1rh50v4	80	72	73	53	61	43	26	1
0h70s1rh50v0	2,894	1,682	904	461	z0h70s1rh50v0	34	25	43	33	27	22	19	1
:0h70s1rh50v1	6,410	1,965	600	142	z0h70s1rh50v1	98	84	83	63	32	19	9	
:0h70s1rh50v2	6,589	2,314	789	156	z0h70s1rh50v2	117	95	85	70	45	28	10	
0h70s1rh50v4	7,031	2,876	994	201	z0h70s1rh50v4	103	92	93	80	56	35	15	
:0h85s1rh50v0	3,549	2,407	1,443	521	z0h85s1rh50v0	53	45	62	49	58	46	31	2
20h85s1rh50v1	5,687	2,397	1,127	305	z0h85s1rh50v1	133	109	81	58	58	43	18	1
20h85s1rh50v2	5,341	2,495	1,198	352	z0h85s1rh50v2	142	106	81	62	63	46	23	1
z0h85s1rh50v4	5,448	2,760	1,324	427	z0h85s1rh50v4	121	95	92	67	64	51	33	1
z0h100s1rh50v0	4,084	2,976	1,823	843	z0h100s1rh50v0	57	43	56	48	53	45	47	3
z0h100s1rh50v1	6,260	2,967	1,636	684	z0h100s1rh50v1	129	108	91	68	53	40	40	2
20h100s1rh50v2	6,087	3,020	1,671	730	z0h100s1rh50v2	139	115	96	76	61	47	43	3
20h100s1rh50v4	6,395	3,331	1,742	791	z0h100s1rh50v4	126	113	105	80	63	47	46	- 4
z0h130s1rh50v0	4,571	2,440	1,282	505	z0h130s1rh50v0	113	96	70	60	60	54	31	2
z0h130s1rh50v1	6,759	3,109	1,320	559	z0h130s1rh50v1	131	124	117	83	66	49	35	2

© buildingscience.com

Separating the Impact of Lower Airflow and Overcooling in Houston

		Hours Above 60% RH	AC Runtime (hrs)	AC EER (Btu/Wh)	AC Energy (kWh)	Htg Energy (kWh)	AHU Fan Energy (kWh)	Exh Fan Energy (kWh)	Total Electric w/o HT (kWh)	Total Costs (\$)
	S1 - Conv AC	625	1,943	15.0	4,507	7,667	1,273	203	5,982	806
HERS 100	S10 - Lower Airflow	487	1,970	14.9	4,533	7,673	1,178	203	5,915	801
Single Spd	S11 - Overcooling	328	2,005	15.0	4,632	7,737	1,309	203	6,145	822
	S2 - Both	236	2,014	14.9	4,620	7,724	1,190	203	6,013	811
	S1 - Conv AC	188	3,838	19.3	2,832	2,042	345	203	3,380	358
HERS 70	S10 - Lower Airflow	114	3,934	19.3	2,862	2,043	341	203	3,406	360
2-Stage	S11 - Overcooling	78	4,193	21.7	2,365	2,066	191	203	2,760	309
	S2 - Both	52	4,263	21.6	2,377	2,051	183	203	2,763	309

Performance map data need For dehumidifer equipment v	sateach with both	test cond indoor an	ition and a d outdoor	at each eo heat tran	uipment sfer com	control st ponents	ate			
		Outdoor T/RH/Tdp (F/%/F)	Inlet T/RH/Tdp (F/%/F)	Outlet T/RH/Tdp (F/%/F)	Indoor Wet-coil Airflow (cfm)	Sensible Cooling Capacity ¹ (Btu/h)	Latent Cooling Capacity (Btu/h)	Moisture Removal Capacity (L/h)	Total Power (kW)	Moisture Removal Efficiency (L/kW-h)
Summer, full sensible load ⁸	Test 1a Test 1b Test 1c	95/58/78 	80/60/65 78/55/61 75/50/55							
Summer, part sensible load ³	Test 2a Test 2b Test 2c	80/85/75 ""	80/60/65 78/55/61 75/50/55							
Spring-Fall, part sensible load ³	Test 3a Test 3b Test 3c	75/85/70 '''	78/60/63 78/55/61 75/50/55							
Winter, latent load only ⁹	Test 4a Test 4b Test 4c ¹ Negati ² Same ³ All tes	65/90/62 "" ve cooling o units as the s with stea	72/60/57 70/52/52 68/45/46 apacity de USDOE a ady wet coi	notes net I and USEP/	heat adde A Energy	d from inle Factor for o	t to outlet dehumidifi	ers		
	dryt	Air entering	outdoor unit	(E) drybulk	ir entering	indoor unit	L (E)	Comme	ent	
ARI ratings (67 indoor wetb	ulb)	95 4	10	67	80	51	60 45	F saturate	d suctio	n

